ELECTRONICS FOR ENGINEERING
ELECTRONICS FOR ENGINEERING
Postgraduate studies in engineering
Operational Amplifiers, Important Theorems and Circuits, Multistage Differential Amplifiers, Electronic Projects,
Exercises and Demonstrations.
EMANUEL EDUARDO PIRES VAZ
Dedication:
Scientia est lux lucis
Table of Contents:
Dedication
CHAPTER 1
1.1. Single-ended and differential amplifiers
Review
1.2. The "operational" amplifier
Review
1.3. Negative feedback
Review
1.4. Divided feedback
Review
1.5. An analogy for divided feedback
1.6. Voltage-to-current signal conversion
1.7. Averager and summer circuits
Review
1.8. Building a differential amplifier
1.9. The instrumentation amplifier
Review
1.10. Differentiator and integrator circuits
Review
1.10.1. Positive feedback
Review
1.11. Practical considerations
1.11.1. Common –mode gain.
1.11.2. Instrumentation amplifier.
1.12. Offset voltage.
1.13. Bias current
Review
1.14. Drift
Review
1.15. Frequency response.
Review
1.16. Input to output phase shift.
1.17. Operational amplifier models.
CHAPTER 2.
2.1. Important theorems and circuits.
2.1.1. Thèvenin`s and Norton’s theorems.
2.2. Source absorption theorem.
2.3. Equivalent two-post network technique.
CHAPTER 3. Multistage Differential Amplifiers.
3.1. Introduction.
3.2. Differential pair.
3.2.1. Differential mode and common mode.
3.2.1.1. Differential pair with differential input of high amplitude.
3.2.1.2. Variation of collector currents in differential mode.
3.2.1.3. Linearization of the characteristic by placing resistors in the emitters.
3.2.1.4. Common mode.
3.2.1.5. Differential mode.
3.2.1.6. Separation in a circuit with a geometrical symmetry of the common and differential modes.
3.2.1.7. Final result by superposition.
3.2.1.8. Differential pair to complete PFR.
3.2.1.9. Half differential pair for PFR.
3.2.1.10. Complete differential pair in incremental scheme for the differential mode.
3.2.1.11. Common mode.
3.2.1.12. Complete differential pair in the incremental scheme for the common mode.
3.2.1.13. Common mode rejection ratio.
3.2.1.14. Differential pair with MOS transistors.
3.2.1.14.1. Common mode.
3.2.1.15. Differential pair with MOS transistors.
3.2.1.15.1. Differential mode.
3.2.1.15.2. Operation with high level signal.
3.2.1.16. Control of the linear zone of operation.
3.2.1.17. Differential gain under the low level signal.
3.2.1.18. Common mode gain under the low level signal and common mode rejection ratio.
3.2.1.19. Differential pair with unilateral output.
3.2.1.20. Active load using a current mirror.
3.2.1.20.1. Balance situation.
3.2.1.20.2. Dynamic behaviour.
3.2.2. FET.
3.3. Small signal operation.
3.3.1. Problem.
3.4.11. Resolution of problem 3.4.1.
3.5. Operation with arbitrary input voltages.
3.5.1. Other non-ideal characteristics.
3.5.1.1. Input offset voltage.
3.5.2. Bias current and input offset current.
3.6. Bias circuits for differential pairs.
3.6.1. Discrete circuits.
3.6.1.1. Problem.
3.6.1.1.1. Resolution of the problem 3.6.1.1.
3.7. Integrated circuits.
3.7.1. Problem.
3.7.1.1. Resolution of problem 3.7.1.
3.8. Improving the bandwidth.
3.8.1. CE configuration bandwidth.
3.8.1.1. Problem.
3.8.1.1.1. Resolution of the problem 3.8.1.1.
3.9. CE-CB cascade pair.
3.10. CE-CB complementary cascade.
3.11. CC-CB complementary cascade.
3.11.1. Problem.
3.11.1.1. Resolution of the problem 3.11.1.
3.11.2. Cascode differential pair.
3.11.3. Maximising the differential pair voltage gain.
3.11.4. Differential pair with a simple active load.
3.11.4.1. Differential pair with current mirror active load.
3.12. One CMOS differential pair with active load.
3.13. High voltage gain and input resistance stages.
3.13.1. The Darlington pair- CC-CC configuration.
3.13.2. Common emitter Darlington configuration.
3.13.3 CC-CE configuration.
3.14. Output stages.
3.14.1. Voltage follower complementary pair.
3.14.2. Ideal situation.
3.14.3. Circuit behaviour with real components.
3.14.4. Compensating the crossover distortion.
3.14.4.1. Problem.
3.14.4.1.1. Resolution of problem 3.14.4.1.
3.14.4.2. Understanding of multiplier.
3.14.4.2.1. Resolution of the problem 3.14.4.2.
3.14.5. Problem.
3.14.5.1. Resolution of the problem 3.14.5.
3.15. Getting high input impedance.
3.16. The CE input resistance.
3.17. Decreasing the input resistance of the emitter follower due to the base biasing resistors.
3.18. Analysis of a typical three stage OpAmp.
3.19. DC analysis.
3.20. Small signal analysis.
CHAPTER 4. Electronic Projects.
4.1. Great alarm to help protect doors and windows.
4.2. Protection of a car for possible intruders.
4.3. Stirrer for simple circuit boards.
4.4. Simulator of presence for the automation of electronic equipment.
4.5. TV transmitter.
4.5.1. How it works.
4.5.2. Adjustment and use.
4.6. Touch sensor that triggers a lamp or other electronic device.
4.7. Luminosity of a lamp driven according to a sound source.
4.8. Control power to the soldering iron.
4.9. Voltage controller.
4.10. Magnetic switch.
4.11. Dynamic microphones mixer.
4.12. 12 volt power supply.
4.13. Light signal to the phone.
4.14. Power supply without transformer.
4.15. Touch switch with the IC555.
4.16. Tests for automatic batteries.
4.17. AM receiver without power.
4.18. Bipolar transistors tester.
4.19. Voltage source of 15 V 3 A.
4.20. Analysis and design of the Doherty amplifier based on class F and inverse class F amplifiers.
4.20.1. The class F and amplifiers.
4.20.2. The configuration of the new Doherty amplifier.
4.20.2.1. The peaking amplifier.
4.20.2.1.1. The carrier amplifier.
4.20.2.2. Verification for the new configuration.
4.20.2.3. Implementation and experimental results.
4.20.3. Conclusion.
CHAPTER 5. Exercises and demonstrations.
5.1. Thèvenin`s theorem.
5.1.1. Thèvenin`s equivalent circuit.
5.1.2. Presentation of the Thèvenin`s theorem.
5.1.2.1. Proof of the Thèvenin`s theorem.
5.1.2.1.1. Worked example.
5.1.2.1.1.1 Step 1 of worked example 5.1.2.1.1.
5.1.2.1.1.2. Step 2 of worked example 5.1.2.1.1.
5.1.2.1.1.3. Thèvenin`s theorem. Worked example 5.1.2.1.1.
5.1.2.1.2. Worked examples.
5.1.2.1.2.1. Thèvenin`s theorem. Worked Example 5.1.2.1.2.
5.1.2.1.2.2. Thèvenin`s theorem. Step 1 for worked example 5.1.2.1.2.
5.1.2.1.2.3. Thèvenin`s theorem: step 2 for worked example 5.1.2.1.2.
5.1.2.1.2.4. Thèvenin`s theorem. Worked example 5.1.2.1.3, another way.
5.1.2.1.2.5. Alternate method to obtain.
5.1.2.1.2.6. Another view.
5.2. Norton’s theorem.
Review.
5.3. Network theorems.
5.3.1. Superposition theorem.
5.3.1.1. Superposition of voltage sources.
5.3.1.2. Superposition of current sources.
5.3.1.2.1. Problem 1.
5.3.1.2.2. Problem 2.
5.3.2. Thèvenin`s theorem.
5.3.3. Norton’s theorem.
5.3.3.1. Load line and output resistance.
5.3.3.2. Problem.
5.3.4. transformation.
5.3.4.1. Convert Y to.
5.3.4.3. Example “0”.
5.3.4.4. Problem.
5.3.4.4.1. Method 1, -Y conversion.
5.3.4.4.2. Method 2. Thèvenin`s theorem.
5.3.4.5. Problem.
5.4. Method 1. Superposition theorem.
5.5. Method 2, Thèvenin`s theorem.
5.6. Mesh analysis.
5.6.1. Mesh currents and essential meshes.
5.6.1.1. Setting up the equations.
5.6.1.1.1. Special cases.
5.6.1.1.1.1. Super mesh.
5.6.1.1.2. Dependent sources.
5.6.1.1.2.1. Mesh current, conventional method.
5.6.1.1.2.2. Problem.
5.6.1.1.2.3. Problem.
Review.
5.6.2. Mesh current by inspection.
5.6.2.1. Mesh current rules.
5.6.3. Node voltage method.
5.6.3.1. Node voltage rules.
5.6.3.1.1. Problem.
5.6.3.1.2. Problem.
Review.
5.6.4. Millman`s theorem or parallel generator theorem.
5.6.4.1. Problem.
5.7. Problem.
5.8. Problem. Common drain circuit.
5.9. Problem. Common drain circuit (again).
5.10. Problem. Differential pair.
5.11. Problem. Multistage FET amplifier.
5.12. Problem.
5.12.1. Answer to problem 5.12.
5.13. Problem.
5.13.1. Answer to problem 5.13.
5.14. Problem.
5.14.1. Answer to problem 5.14.
5.15. Problem.
5.15.1. Answer to problem 5.15.
5.16. Problem.
5.16.1. Answer to problem 5.16.
5.17. Problem.
5.17.1. Answer to problem 5.17.
5.18. Problem.
5.18.1. Answer to problem 5.18.
5.19. Problem.
5.19.1. Answer to problem 5.19.
5.20. Problem. Don’t just sit there, but build something!!!
5.20.1. Answer to problem 5.20.
5.21. Problem: comparator using two force transducers.
5.2.1.1. Answer to problem 5.21.
Books already published by the same author.
Afterword.